
Page 1/4

+

Final Exam :: Trimester: Summer - 2017

Course Code: CSI 211, Course Title: Object-Oriented Programming
Total Marks: 40 Duration: 2 Hours

There are seven questions. Answer any five questions. Figures in the right-hand margin indicate full marks

Question 1 [3+5]

The following class has been created to help your course teacher to keep track of Students with low attendance and

low test score. Observe the code below, the sample run/output and create the Exception Classes’ mentioned in the

code; InSufficientAttendanceException, LowScoreException, so that the program produces the following outputs.

import java.util.Scanner;
public class ScoreTracker {
 public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter number of Student:");
 int studentCount = scan.nextInt();
 for(int i =0; i<studentCount; i++){
 try{
 System.out.print("\nEnter attendance of "+i+"th
Student:");
 int att = scan.nextInt();
 if (att<=4)
 throw new InSufficientAttendanceException(4);

 System.out.print("Enter total test score:");
 double totalScore = scan.nextDouble();
 if(totalScore <55)
 throw new LowScoreException(55);

 System.out.print("Enter class test score:");
 double ctScore = scan.nextDouble();
 if(ctScore <8)
 throw new LowScoreException(8, totalScore);
 }
 catch(Exception e){
 System.out.println(e.getMessage());
 }
 } // end of for loop
 }// end of main
}// end of class

Sample run/output
Enter number of Student:3

Enter attendance of 0th Student:3
Minimum attendance should be 4 days.

Enter attendance of 1th Student:20
Enter total test score:54
Total test score should be 55.0 or
above.

Enter attendance of 2th Student:12
Enter total test score:70
Enter class test score:7
Minimum class test score should be 8.0.

Question 2 [8]

Suppose you and your friend “Bondhu” are playing football. Since there are no other players, you are casually passing

the ball to Bondhu and he’s passing you back. As there is only one football, a player can only pass it when he has it on

his foot. Now, write a Java program that simulates the scenario by writing two Java thread classes Bondhu and Player1

where Football is a shared item. Also write a Test class that contains the main method which outputs the following:

Player1 passed

Bondhu passed

Player1 passed

Bondhu passed

.....

Note that, a player cannot pass if he does not have the football. So a sequence “Bondhu passed, Bondhu passed” is

invalid. The game should end after each of the players has made five passes.

United International University (UIU)
Dept. of Computer Science & Engineering (CSE)

Zitu
Highlight

Zitu
Highlight

Page 2/4

Question 3 [4+4]

a) Update the Java program below to match the expected output. You cannot remove any line of code and you

must not simply print the expected output.

Code Expected Output
class Work implements Runnable {

 String name;

 Thread t;

 Work(String name) {

 this.name = name;

 t = new Thread(this, name);

 System.out.println("New work: "+ t.getName());

 t.start();

 }

 public void run() {

Thread.sleep(1000);

 }

}

public class Test {

 public static void main(String[] args) {

Work w1 = new Work("Eat");

Work w2 = new Work("Pray");

Work w3 = new Work("Love");

System.out.println("Main thread exiting");

} }

 New work: Eat
New work: Pray
Eat: 3
New work: Love
Pray: 3
Love: 3
Love: 2
Pray: 2
Eat: 2
Pray: 1
Love: 1
Love: exiting
Eat: 1
Eat: exiting
Pray: exiting
Main thread exiting

b) The following Java program is incomplete and/or contains errors. List the errors (if any) and then rewrite the

program to match the expected output. You are not allowed to (i) modify the main method and (ii) use

method overloading.

class Dragon {

 String name;

 double firePower;

 public Dragon(String name, double firePower) {

 this.name = name;

 this.firePower = firePower;

 }}

public class FaultyMaybe {

 public static int minimum(int x, int y, int z) {

 int min = x;

 if (y < min) min = y;

 if (z > min) min = z;

 return min;

 }

 public static void main(String[] args) {

 System.out.println("Min of 3, 4, 5: " + minimum(3,4,5));

 System.out.println("Min of 3.3, 4.3, 1.5: " + minimum(3.3,4.3,1.5));

 System.out.println("Min of Robb, Jon, Bran: " + minimum("Robb","Jon","Bran"));

 Dragon [] drgns = new Dragon[3];

 drgns[0] = new Dragon("Drogon", 2.3);

 drgns[1] = new Dragon("Rhaegal", 1.2);

 drgns[2] = new Dragon("Viserion", 0.3);

 System.out.println("Least powerful dragon: "+minimum(drgns[0],drgns[1],drgns[2]));

 }

}

Expected output:

Min of 3, 4, 5: 3
Min of 3.3, 4.3, 1.5: 1.5
Min of Robb, Jon, Bran: Bran
Least powerful dragon: Viserion

Zitu
Highlight

Zitu
Highlight

Page 3/4

Question 4 [1.5+1.5+5=8]

Suppose there are two Java classes, namely Circle and Quadrilateral. The Circle class contains an attribute radius and

the Quadrilateral class contains attributes dim1 and dim2. Both classes implement an interface Drawable that

contains a method void draw(). They also have common methods double getArea() and double getPerimeter(). You

have decided to introduce a super/parent class for these two classes called Shape2D that will have getArea() and

getPerimeter() methods as abstract methods since they only have meaning in the subclasses.

Suppose there are two more Java classes named Rectangle and Square that extend Quadrilateral. Now

answer the following:

i. Decide whether the class Shape2D should be declared as an abstract class or an interface. Why so?
ii. Should the class Quadrilateral be abstract? Why so?

iii. Write complete Java code implementations of the aforementioned classes and interface(s). You
should add parameterized constructors to the classes.

Main Method
public static void main(String[] args) {

 Quadrilateral q1 = new Rectangle(10, 5);

 Quadrilateral q2 = new Square(8);

 Shape2D shape = new Circle(5);

 System.out.println("Area: " + shape.getArea());

 shape = q1;

 System.out.println("Area: " + shape.getArea());

 shape = q2;

 System.out.println("Area: " + shape.getArea());

 System.out.println("Perimeter: "+q2.perimiter());

 Drawable d = q2;

 d.draw();

}

Your code should output the following
when this main method is run:
Area: 78.54
Area: 50.0
Area: 64.0
Perimeter: 32.0
Drawing Square

Question 5 [3+2+3]

Create a simple GUI application as shown below. There are 3 TextFields to take input for the RGB values of a color.

Clicking the “Change Color” will change the background color to the specific color generated by the RGB values

entered by the user in those 3 TextFields. If user enters any value less than 0 or greater than 255, a pop-up message

will display as shown below. Also entering any input other than integer value will display another pop-up as shown

below.

Any value<0 or >255 will display following pop-up. Any non-number value will display the following popup.

Question 6 [8]

The records of Chikungunya victims are stored in a txt file name victims.txt. Each record contains name followed by

age followed by district; the record are stored in ascending order of district name. Write a program that will read the

records from the file, find the district with highest Chikungunya victims, and display the district name with victim

count in console.

victims.txt Expected Output
Bari-45-Barishal
Hasan-50-Barishal
Kayes-25-Dhaka
Rawnak-35-Dhaka
Jabed-43-Dhaka
Sumi-48-Rajshahi

Dhaka-3

Zitu
Highlight

Zitu
Highlight

Page 4/4

Question 7

Find out the output of the following Java program. [8]
import java.util.*;

class Device implements Comparable<Device> {

 String name, type;

 int price;

 public Device(String name, String type, int price) {

 this.name = name;

 this.type = type;

 this.price = price;

 }

 @Override

 public String toString() {

 return new String(name + " " +price);

 }

 @Override

 public int compareTo(Device o) {

 return price - o.price;

 }

}

public class CollectionTest {

 public static void main(String[] args) {

 ArrayList<Device> devices = new ArrayList<Device>();

 devices.add(new Device("Samsung S7", "Mobile", 1000));

 devices.add(new Device("iPhone 6", "Mobile", 1150));

 devices.add(new Device("Huawei P7", "Mobile", 500));

 List<Device> laptops = new LinkedList<Device>();

 laptops.add(new Device("Dell Alienware", "Laptop", 3500));

 laptops.add(new Device("MacBook", "Laptop", 2500));

 laptops.add(new Device("HP", "Laptop", 1400));

 for (Device d : devices)

 System.out.println(d);

 devices.addAll(laptops);

 Collections.sort(devices, new Comparator<Device>() {

 @Override

 public int compare(Device o1, Device o2) {

 return o1.name.compareTo(o2.name);

 }

 });

 System.out.println("\nAfter sorting devices: ");

 for (Device d : devices)

System.out.println(d);

 Collections.sort(laptops, Collections.reverseOrder());

 System.out.println("\nAfter sorting laptops: ");

 for (Device d : laptops)

System.out.println(d);

 devices.add(1, new Device("Sony", "Laptop", 2000));

 HashMap<String, Integer> map = new HashMap<>();

 map.put(devices.get(3).name, devices.get(3).price);

 try {

 System.out.println(map.get("MacBook"));

 System.out.println(map.get("Huawei P7"));

 }

catch (Exception e) { e.printStackTrace (); }

 }}

Zitu
Highlight

