
Page 1 of 4

Final Exam. : : Trimester: Spring - 2017

Course Code: CSI 211 , Course Title: Object-Oriented Programming
Total Marks: 40 Duration: 2:00 Hours

There are 7 questions. Answer any 5 questions. Figures in the right-hand margin indicate full marks.

1. Find the output of the programs below. [4+4]

a) public class TestThread {
 public static void main (String [] args) {
 Thread t = new MyThread() {
 public void run() {
 System.out.print(" are you running?");
 }
 };
 t.start();
 }
}

class MyThread extends Thread {
 MyThread() {
 System.out.print("MyThread");
 }
 public void run() {
 System.out.print(" running");
 }
 public void run(String s) {
 System.out.print(s + " is running again");
 }
}

b) import java.util.InputMismatchException;

public class TestException {
 public static void main(String[] args) {
 int num = 4;
 try{
 try{
 throwException(num);
 }catch(InputMismatchException e){
 System.out.println(e.getMessage());
 throwException(++num);
 }finally{
 System.out.println("I am out of here."); }
 }catch(Exception e){
 System.out.println(e.getMessage());
 }
 }

 public static void throwException(int num){

 if(num%2==0)
 throw new InputMismatchException("Can't be an even number.");
 else if(num%5==0)
 throw new NumberFormatException("Can't be a multiple of 5.");
 else
 System.out.println("Input: "+5);

 }
}

United International University (UIU)

Dept. of Computer Science & Engineering (CSE)

Zitu
Highlight

Page 2 of 4

2. Suppose, you are given an ArrayList named listNum of 15 Integer numbers and listNum is

already initialized with 15 random values: 37, 46, 8, 55, 39, 76, 96, 15, 77, 57, 47, 18, 86, 11, 71.

Write a multi-threaded program where each thread will remove 5 items (one at a time) from

listNum. Note that listNum is commonly accessed by all the threads. From main, create and

start three threads. Use appropriate precaution so that listNum is updated properly, or in other

words no two threads update listNum at the same moment. So, after running three threads,

the ArrayList (listNum) should be empty. [8]

3. You are helping a programming contest organizer to select the teams for the contest. Each team

can have minimum of 3 members and maximum 5 members and each team member must

complete 100 credit hours to participate. A partial program has already been written as shown

below. You are asked to rewrite the checkTeamCount(int) and checkCredit(int) method as

instructed below. Also you need to implement the 2 custom exceptions mention in those 2

methods. Implement the InvalidTeamMemberException, InvalidMemberCountException in

such a way so that you can specify/pass the credit, minimum and maximum member count into

the exception class and set the exception message using those parameters. For

InvalidTeamMemberException the exception message should be set to “Must complete

[minCredit] credits to participate in the contest” and for InvalidMemberCountException the

exception message should say “We need [min] to [max] team members to participate in the

contest.” [8]

import java.util.Scanner;
public class ProgrammingContest {

public static void main(String[] args) {
 Scanner scan = new Scanner(System.in);
 System.out.println("Please enter team member count");
 int teamCount = scan.nextInt();
 try{
 checkTeamCount(teamCount);
 }catch(InvalidMemberCountException e){
 }
 int creditComp=0;

 for(int i=0; i<teamCount; i++){
 System.out.println("Please enter the credit completed by member "+ (i+1));
 creditComp = scan.nextInt();
 try {
 checkCredit(creditComp);
 } catch (InvalidTeamMemberException e) {
 }
 }
}
public static void checkTeamCount(int count) {
//throw InvalidMemberCountException when count is less than 3 or greater than 5.
//pass 3 for min & 5 for max count while creating InvalidMemberCountException
}

public static void checkCredit(int credit) {
// throw InvalidTeamMemberException if credit is less than 100.
// and pass 100 as minCredit while creating InvalidTeamMemberException object
}

}

Zitu
Highlight

Zitu
Highlight

Page 3 of 4

4. UIU CSE admin is storing the section wise student count for every course in a text file named

“Sections.txt”. Each line stores record of one Course in the format [courseID-secACount-

secBCount-secCCount…]. Write a program that will read the file one line at a time, calculate the

total student of that course and then write that info in a separate file named “Output.txt” in

the format [courseID-totalStudents]. See below for the sample input and output file. [8]

Sections.txt Output.txt

CSI121-30-35-29
CSI122-20-24-25-20
CSI211-34-26-30
CSI212-20-20-20-25

CSI121-94
CSI122-89
CSI211-90
CSI212-85

5. An electronics shop needs a simple GUI to record their sales information, where they will enter

their sales amount each time they sell and it will give them the total sales. So create a simple

GUI as shown below; initially the total sales will be 0. When user enters the sale in the textfield

and hit the “Record” button, it will add that sale amount to the total sales and display in the

label below it, it will also clear the textfield. If user enters anything other than number, a pop-up

message should display saying “Please enter a valid number for sale” as shown in the picture

below. [8]

1.Initial State 2. User entered Sales amount 3. User clicked “Record”

4. User entered another Sales
amount

5. User clicked “Record” 6. User entered invalid number e.g.
“a” in Sales, a popup message display

6. Find out if the following JAVA programs have any error. List the errors if any. Fix the code and

rewrite after the errors list. You cannot delete any line of code. However, you are allowed to

edit or add any code as per requirement. [4+4]

a) public class TestThread1 implements Runnable{
 String name;
 public TestThread1(String name) {
 this.name = name;
 }
 public void run(int n){
 System.out.printf("Running:%s %d times.\n", name, n);
 }

 public static void main(String[] args) {
 TestThread1 t1 = new TestThread1("First Thread");
 t1.start();
 t1.join();
 }

Zitu
Highlight

Zitu
Highlight

Zitu
Highlight

Page 4 of 4

}

b) import java.io.IOException;
public class TestExceptionError {
 public static void main(String[] args) {
 try {
 whoIs("IOException");
 } finally{
 System.out.println("Always executes.");
 }
 System.out.println("Which exception should be handled?");
 catch (Exception e) {
 e.printStackTrace();
 }catch (IOException e) {
 e.printStackTrace();
 }
 }
 public static void whoIs(String n) throws IOException{
 System.out.println("Who is "+n+"?");
 }
}

7. a) Create a generic static method named sort(…) that will take 2 parameters; first one is an

ArrayList of Generic type and 2nd one is a boolean. The method will sort the ArrayList in

ascending order if the boolean parameter is true, descending otherwise. [5]

b) Modify the following BankAccount class in such a way so that following code generates the

expected output as shown below i.e. the ArrayList should be sorted in ascending order of

balance. [3]

Code Expected Output
public class TestGeneric {
public static void main(String[] args) {
 ArrayList<BankAccount> accounts=new ArrayList<BankAccount>();
 accounts.add(new BankAccount("Rasha", "011123", 12000));
 accounts.add(new BankAccount("Keya", "011124", 10500));
 accounts.add(new BankAccount("Asad", "011125", 100000));

 Collections.sort(accounts);
 System.out.println("Accounts sorted in Ascending order:");
 for(BankAccount b: accounts)
 System.out.println(b);
 }
}
class BankAccount {
 String name, id;
 double balance;
 public BankAccount(String name, String id, double balance){
 this.name = name;
 this.id = id;
 this.balance = balance;
 }
}

Accounts sorted in
Ascending order:
Keya-011124-10500.0
Rasha-011123-12000.0
Asad-011125-100000.0

