

- 2. (a) **Rewrite** the code segment (see <u>above right</u>) using "if ... else" without changing [3] the logical meaning.
 - (b) **Manually trace** the following code segment and show the change of values of the [3] variables **i**, **j**, **n** in each step.

```
#include <stdio.h>
void main() {
    int i = 2, n = 10, j=0;
    for(j = n; j > i; j--) {
        if(j % 2 == 0) i++;
        else n--;
    }
    i += 2;
}
```

3. (a) Write a C program that takes an integer **n** as input from the user and prints a [3] specific pattern given as follows. For example, for $\mathbf{n} = \mathbf{4}$, the output pattern will be as follows. You must program for n, NOT for 4.

```
*****
*****
*****
****
```

(b) **Replace** all the "for" loops in the following code using only "while" loops [3] without changing the logical meaning of the program.

int arr[10]= {0}; int k = 15, for(int i=1; i<6; i+=2){ arr[i] = ++k-2; k++; } int c = 0; for(int i=6; i<10; i++) for(int j=9; j>=i; j--){ arr[j] = ++c; } for(int i=0; i<10; i++){ if(i%2==0) arr[i] = ++k; }

4. (a) Write a C program that takes n number of integers as input into an array of size [3] N, where n is an odd number and $n \le N$. Your task is to reverse the first half array elements and the last half array elements, keeping only the middle element intact.

Initial Array Elements	Final Array Elements
1234567	3 2 1 4 7 6 5
10 20 30 40 50	20 10 30 50 40
987	9 8 7

(b) **Draw a flow chart** to take an integer as input. Then, display its **odd factors** and [3] calculate the **sum** of its **even factors**. Hint: any integer number is a multiple of any of its factors.

Sample input	Sample output	
20	1 5 [Odd factors]	
	36 [Sum of the even factors: 2 + 4 + 10 + 20 = 36]	
28	1 7 [Odd factors]	
	48 [Sum of the even factors: 2 + 4 + 14 + 28 = 48]	

5. (a) Manually trace the given code segment. Show the changes of all the variables i, j, [3] jump, and array A and B elements in each step.

int A[4]={3, 2, 1};	int arr[][4]={{5, 7, 3, 13},
int B[4]={10, 20, 30};	$\{31, 2, 11, 23\},\$
int jump=100;	$\{17, 19, 43, 53\},\$
for(int i=0; i<3; i++){	$\{37, 47, 29, 61\}\};$
jump = A[i] * 2;	int n=4, sum=0, x = 0;
for(int j=0; j<3; j++){	for(int i = 0; i <n; i++){<="" td=""></n;>
B[i] = A[i] + B[i];	for(int j = 0; j <n; j++){<="" td=""></n;>
jump = B[i]/2;	if(j==n-1 i+j==n-1){
}	x = arr[i][j];
A[i]++;	<pre>sum+=x;</pre>
}	}
C Code for 5(a)	} } C Code for 5(b)

(b) **Manually trace** the given code segment (see <u>above right</u>) and show the changes of [3] all the variables **i**, **j**, **x**, and **sum** in each step.